Переходные элементы - определение. Что такое Переходные элементы
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Переходные элементы - определение

Переходные элементы; Переходный металл; Непереходный металл
  • справа
  • справа
  • справа
  • справа
  • справа
Найдено результатов: 145
Переходные элементы         

переходные металлы, химические элементы Iб - VIIIб подгрупп периодической системы элементов (См. Периодическая система элементов) Д. И. Менделеева. Особенность строения атомов П. э. заключается в незавершённости их внутренних электронных оболочек; соответственно различают d-элементы, у которых происходит заполнение 3d-, 4d-, 5d- и 6d-подоболочек, и f-элементы, у которых заполняется 4f-подоболочка (Лантаноиды) и 5f-подоболочка (Актиноиды). Такое строение электронных оболочек определяет некоторые специфические свойства П. э. (способность к комплексообразованию, ферромагнетизм и др.). Общее число П. э. составляет 61.

ПЕРЕХОДНЫЕ ЭЛЕМЕНТЫ         
(переходные металлы) , химические элементы подгрупп "б" периодической системы Менделеева. Атомы переходных элементов имеют незавершенные внутренние электронные оболочки. Различают d-элементы, у которых происходит заполнение внутренних 3d-, 4d-, 5d- и 6d-подоболочек, и f-элементы, у которых заполняются внутренние 4f-подоболочка (лантаноиды) и 5f-подоболочка (актиноиды). Переходные элементы занимают переходное положение между металлами и неметаллами в больших периодах (отсюда название); они имеют некоторые общие специфические свойства (напр., способность к комплексообразованию). Переходные элементы и их соединения, в частности металлоорганические, находят все более широкое применение. Известно 67 переходных элементов, включая элементы 106-109.
Элементы Юнга — Юциса — Мёрфи         
Элементы Юнга — Юциса — Мёрфи (также элементы Юциса — Мёрфи) — элементы групповой алгебры \Complex[S_n] симметрической группы S_n, определяемыеА. М.
Трансурановые элементы         
РАДИОАКТИВНЫЕ ХИМИЧЕСКИЕ ЭЛЕМЕНТЫ, РАСПОЛОЖЕННЫЕ В ПЕРИОДИЧЕСКОЙ СИСТЕМЕ ЭЛЕМЕНТОВ ЗА УРАНОМ, ТО ЕСТЬ С АТОМНЫМ НОМЕРОМ ВЫШЕ 92
Трансактиноиды; Трансураны; Трансфермиевые элементы; Трансактиноид; Трансактиноидные элементы; Сверхтяжёлые элементы; Трансурановый элемент

химические элементы, расположенные в периодической системе элементов (См. Периодическая система элементов) Д. И. Менделеева за Ураном, то есть с атомным номером Z ≥ 93. Известно 14 Т. э. Из-за относительно высокой скорости их радиоактивного распада Т. э. в заметных количествах не сохранились в земной коре. Возраст Земли около 5․109 лет, а Период полураспада T1/2 наиболее долгоживущих изотопов Т. э. меньше 107 лет. За время существования Земли Т. э., возникшие в процессе нуклеосинтеза, либо полностью распались, либо их количество резко уменьшилось (до 1012 раз). В природных минералах найдены микроколичества 244Pu - наиболее долгоживущего Т. э. (T1/2 Трансурановые элементы 8․106 лет), который, возможно, сохранился на Земле с момента её формирования. В урановых рудах обнаружены следы 237Np (T1/2 Трансурановые элементы 2,14․106 лет) и 239Pu (T1/2 Трансурановые элементы 2,4․104 лет), которые образуются в результате ядерных реакций с участием ядер U.

Первые Т. э. были синтезированы в начале 40-х гг. 20 в. в Беркли (США) группой учёных под руководством Э. Макмиллана и Г. Сиборга, удостоенных Нобелевской премии за открытие и изучение этих элементов. Известно несколько способов синтеза Т. э. Они сводятся к облучению мишени потоками нейтронов или заряженных частиц. Если в качестве мишени используется U, то с помощью мощных нейтронных потоков, образующихся в ядерных реакторах (См. Ядерный реактор) или при взрыве ядерных устройств, можно получить все Т. э. до Fm (Z = 100) включительно. Процесс синтеза состоит либо в последовательном захвате нейтронов, причём каждый акт захвата сопровождается увеличением массового числа А, приводящим к β-распаду и увеличению заряда ядра Z, либо в мгновенном захвате большого числа нейтронов (взрыв) с длинной цепочкой β-распадов. Возможности этого метода ограничены, он не позволяет получать ядра с Z > 100. Причины - недостаточная плотность нейтронных потоков, малая вероятность захвата большого числа нейтронов и (что наиболее важно) очень быстрый радиоактивный распад ядер с Z > 100.

Элемент с Z = 101 (Менделевий) был открыт в 1955 при облучении 25399Es (эйнштейния) ускоренными α-частицами. Пять элементов с Z > 101 были получены на ускорителях заряженных частиц [циклотрон Объединённого института ядерных исследований (См. Объединённый институт ядерных исследований) (ОИЯИ; Дубна, СССР) и линейный ускоритель тяжёлых ионов "Хайлак" (Беркли, США)] в ядерных реакциях с ускоренными тяжёлыми ионами. Определяющий вклад в эти работы внесли группа учёных под руководством Г. Н. Флёрова (Дубна) и группа Г. Сиборга - А. Гиорсо (Лаборатория им. Лоуренса, Беркли). Существенные результаты были получены также в Окриджской национальной лаборатории США.

Для синтеза далёких Т. э. используется два типа ядерных реакций - слияния и деления. В первом случае ядра мишени и ускоренного иона полностью сливаются, а избыточная энергия образовавшегося возбуждённого составного ядра снимается путём "испарения" нейтронов. При использовании ионов С, О, Ne и мишеней из Pu, Cm, Cf образуется сильно возбуждённое составное ядро (энергия возбуждения Трансурановые элементы 40-60 Мэв). Каждый испаряемый нейтрон способен унести из ядра энергию в среднем порядка 10-12 Мэв, поэтому для "остывания" составного ядра должно вылететь до 5 нейтронов. С испарением нейтронов конкурирует процесс деления возбуждённого ядра. Для элементов с Z = 104-105 вероятность испарения одного нейтрона в 500-100 раз меньше вероятности деления. Это объясняет малый выход новых элементов: доля ядер, которые "выживают" в результате снятия возбуждения, составляет всего 10-8-10-10 от полного числа ядер мишени, слившихся с частицами. В этом кроется причина того, что за последние 20 лет синтезировано всего 5 новых элементов (Z = 102-106).

В ОИЯИ разработан новый метод синтеза Т. э., основанный на реакциях слияния ядер, причём в качестве мишеней используются плотно упакованные устойчивые ядра изотопов Pb, а в качестве бомбардирующих частиц сравнительно тяжёлые ионы Ar, Ti, Cr. Избыточная энергия ионов расходуется на "распаковку" составного ядра, и энергия возбуждения оказывается низкой (всего 10-15 Мэв). Для снятия возбуждения такой ядерной системы достаточно испарения 1-2 нейтронов. В итоге получается весьма заметный выигрыш в выходе новых Т. э. Этим методом был осуществлен синтез Т. э. с Z = 100, Z = 104 и Z = 106.

В 1965 Флёров предложил использовать для синтеза Т. э. вынужденное деление ядер под действием тяжёлых ионов. Осколки деления ядер под действием тяжёлых ионов имеют симметричное распределение по массе и заряду с большой дисперсией (следовательно, в продуктах деления можно обнаружить элементы с Z значительно, большим, чем половина суммы Z мишени и Z бомбардирующего иона). Экспериментально было установлено, что распределение осколков деления становится шире по мере использования всё более тяжёлых частиц. Применение ускоренных ионов Xe или U позволило бы получить новые Т. э. в качестве тяжёлых осколков деления при облучении урановых мишеней. В 1971 в ОИЯИ были ускорены ионы Xe с помощью 2 циклотронов, которыми облучалась урановая мишень. Результаты показали, что новый метод пригоден для синтеза тяжёлых Т. э.

Т. э. испытывают все виды радиоактивного распада. Однако Электронный захват и β-распад - процессы относительно медленные, и их роль становится небольшой при распаде ядер с Z > 100, имеющих короткие времена жизни относительно α-распада и спонтанного деления. По мере утяжеления элемента конкуренция между спонтанным делением и (β-распадом становится всё более заметной. Нестабильность относительно спонтанного деления, очевидно, определяет границу периодической системы элементов. Если период полураспада для спонтанного деления 92U Трансурановые элементы 1016 лет, для 94Pu Трансурановые элементы 1010 лет, то для 100Fm он измеряется часами, для 104-го элемента - секундами (см. Курчатовий), для 106-го элемента - несколькими мсек. О химических свойствах Т. э. (до Z = 104) и строении их электронных оболочек см. в ст. Актиноиды.

Теоретическое рассмотрение показывает, что возможно существование очень тяжёлых ядер, имеющих повышенную стабильность относительно спонтанного деления и α-распада. "Остров стабильности" должен располагаться вблизи магического ядра (См. Магические ядра), у которого число протонов 114, а число нейтронов 184. Если гипотетическая область стабильности окажется реальной, то границы периодической системы элементов существенно расширятся. Ведутся поиски экспериментальных путей для проникновения в эту область элементов. Получить 114 протонов в новом ядре сравнительно легко, а 184 нейтрона - трудно. Причём отступление от магического числа 184 даже на несколько единиц резко понижает устойчивость ядра к спонтанному делению.

Расчёты барьеров деления и времён жизни сверхтяжёлых элементов привели к выводу, что некоторые сверхтяжёлые элементы могут иметь период полураспада около 108 лет и их микроколичества могли сохраниться на Земле до нашего времени. В 1968 под руководством Флёрова начаты поиски сверхтяжёлых элементов в природе. Исследуются земные минералы, продукты извержения вулканов, геотермальные воды, а также объекты, способные к аккумуляции тяжёлой компоненты космических лучей (См. Космические лучи) (железо-марганцевые конкреции со дна океанов, илы донных отложений озёр и морей, метеориты, породы лунного регалита). Изучают образцы, в которых, согласно теоретическим представлениям, могут содержаться химические элементы с Z > 108. Одновременно ведутся исследования с помощью ускорителей многозарядных ионов.

Лит.: Флёров Г. Н., Звара И., Химические элементы второй сотни. Сообщения ОИЯИ Д7-6013, [Дубна, 1971]: Флёров Г. Н., Поиск и синтез трансурановых элементов, в кн.: Peaceful uses of atomic energy, N. Y. - Vienna, v. 7, 1972, p. 471; Радиоактивные элементы Po - (Ns) - ..., под ред. И. В. Петрянова-Соколова, М., 1974.

Г. Н. Флёров, В. А. Друин.

трансураны         
РАДИОАКТИВНЫЕ ХИМИЧЕСКИЕ ЭЛЕМЕНТЫ, РАСПОЛОЖЕННЫЕ В ПЕРИОДИЧЕСКОЙ СИСТЕМЕ ЭЛЕМЕНТОВ ЗА УРАНОМ, ТО ЕСТЬ С АТОМНЫМ НОМЕРОМ ВЫШЕ 92
Трансактиноиды; Трансураны; Трансфермиевые элементы; Трансактиноид; Трансактиноидные элементы; Сверхтяжёлые элементы; Трансурановый элемент
мн.
Радиоактивные химические элементы, расположенные в периодической системе элементов Менделеева после урана.
ТРАНСУРАНЫ         
РАДИОАКТИВНЫЕ ХИМИЧЕСКИЕ ЭЛЕМЕНТЫ, РАСПОЛОЖЕННЫЕ В ПЕРИОДИЧЕСКОЙ СИСТЕМЕ ЭЛЕМЕНТОВ ЗА УРАНОМ, ТО ЕСТЬ С АТОМНЫМ НОМЕРОМ ВЫШЕ 92
Трансактиноиды; Трансураны; Трансфермиевые элементы; Трансактиноид; Трансактиноидные элементы; Сверхтяжёлые элементы; Трансурановый элемент
ов, ед. трансуран, а, м. хим.
Радиоактивные химические элементы (иначе называемые т р а н сау р а н о в ы е э л е м е н т ы), в периодической системе Менделеева расположенные после урана. | Большая часть трансуранов не существует в природе, их синтезируют с помощью ядерных реакций.
Трансурановые элементы         
РАДИОАКТИВНЫЕ ХИМИЧЕСКИЕ ЭЛЕМЕНТЫ, РАСПОЛОЖЕННЫЕ В ПЕРИОДИЧЕСКОЙ СИСТЕМЕ ЭЛЕМЕНТОВ ЗА УРАНОМ, ТО ЕСТЬ С АТОМНЫМ НОМЕРОМ ВЫШЕ 92
Трансактиноиды; Трансураны; Трансфермиевые элементы; Трансактиноид; Трансактиноидные элементы; Сверхтяжёлые элементы; Трансурановый элемент
Трансура́новые элеме́нты (заурановые элементы, трансураны) — радиоактивные химические элементы, расположенные в периодической системе элементов Д. И.
ТРАНСУРАНОВЫЕ ЭЛЕМЕНТЫ         
РАДИОАКТИВНЫЕ ХИМИЧЕСКИЕ ЭЛЕМЕНТЫ, РАСПОЛОЖЕННЫЕ В ПЕРИОДИЧЕСКОЙ СИСТЕМЕ ЭЛЕМЕНТОВ ЗА УРАНОМ, ТО ЕСТЬ С АТОМНЫМ НОМЕРОМ ВЫШЕ 92
Трансактиноиды; Трансураны; Трансфермиевые элементы; Трансактиноид; Трансактиноидные элементы; Сверхтяжёлые элементы; Трансурановый элемент
химические элементы, расположенные в периодической системе после урана, т. е. с атомным номером Z ??93. Известно 17 трансурановых элементов. Все они синтезированы с помощью ядерных реакций (в природе обнаружены только микроколичества Np и Pu). Трансурановые элементы радиоактивны; с увеличением Z период полураспада трансурановых элементов резко уменьшается (от 8·107 лет для 244Pu до мс для элементов c Z=106-109).
Переходный процесс         
  • Затухающие колебания — типичный переходной процесс при котором некоторый параметр некоторое время колеблется вокруг установившегося значения
Перехо́дный проце́сс — в теории систем представляет изменения во времени координат динамической системы, до некоторого установившегося состояния; возникает под влиянием возмущающих воздействий, изменяющих её состояние, структуру или параметры, а также вследствие ненулевых начальных условий.
Переходные процессы         
  • Затухающие колебания — типичный переходной процесс при котором некоторый параметр некоторое время колеблется вокруг установившегося значения

в электрических цепях, явления, возникающие при переходе от одного режима работы электрической цепи к другому, отличающемуся от предыдущего амплитудой, фазой, формой или частотой действующего в цепи напряжения, значениями параметров или конфигурацией цепи. П. п. возникают главным образом при Коммутациях в электрических цепях и обусловлены тем, что ток, проходящий через катушку индуктивности, и напряжение на конденсаторе не могут изменяться скачком, то есть энергия электрического и магнитного полей в ёмкостных и индуктивных элементах цепи не может изменяться мгновенно.

Теоретически П. п. длится неограниченно долго, так как напряжение и сила тока в электрической цепи после коммутации приближаются к конечному (установившемуся) значению и сила тока достигают значений, отличных от установившихся на 5-10\%, что происходит за конечный, сравнительно короткий промежуток времени. Режим электрической цепи, который характеризуется постоянными или периодически изменяющимися токами и напряжениями, называется установившимся.

Простейшим примером П. п. может служить зарядка конденсатора ёмкостью С (рис.) от источника постоянного тока (аккумулятора) с эдс Е и внутренним сопротивлением r через резистор R, ограничивающий ток в цепи. Начиная с момента времени t = 0, когда замыкается ключ, ток в цепи уменьшается по экспоненциальному закону, приближаясь к нулю, а напряжение увеличивается, асимптотически стремясь к значению, равному эдс источника. Скорость изменения напряжения и тока зависит от ёмкости конденсатора и сопротивления в цепи: чем больше ёмкость и сопротивление, тем длительнее процесс зарядки. Через интервал времени τ = (R + r)․C, называемый постоянной времени зарядки конденсатора, напряжение на его обкладках достигает значения uc = 0,63 Е, а сила тока i=0,37 Io, где Io - начальная сила тока, равная отношению эдс к сопротивлению цепи. Через интервал времени 5τ uc>0,99 Е, а сила тока i<0,01 I0, и с погрешностью менее 1\% П. п. можно считать закончившимся. За время П. п. энергия электрического поля конденсатора увеличивается от нуля до Wc= 1/2CE2.

Во время П. п. на отдельных участках цепи могут возникнуть напряжения и токи, значительно превышающие напряжения и токи установившегося режима, то есть перенапряжения (См. Перенапряжение) и сверхтоки. При неправильном выборе оборудования перенапряжения могут привести к пробою изоляции, например в конденсаторах, трансформаторах, электрических машинах, а сверхтоки - к срабатыванию элементов защиты и отключению установки, к перегоранию приборов, обгоранию контактов, механическим повреждениям обмоток вследствие электродинамических усилий. П. п. играют исключительно важную роль в системах автоматического регулирования, в импульсной, вычислительной и измерительной технике, в электронике и радиотехнике и в электроэнергетике.

Лит.: Основы теории цепей, М.- Л., 1965; Нейман Л. Р., Демирчян К. С., Теоретические основы электротехники, т. 1, Л., 1967; Гинзбург С. Г., Методы решения задач по переходным процессам в электрических цепях, 3 изд., М., 1967; Веников В. А., Переходные электромеханические процессы в электрических системах, М., 1970; Теоретические основы электротехники, ч. 1, М., 1972; Бессонов Л. А., Теоретические основы электротехники, М., 1973.

Б. Я. Жуховицкий.

Схема зарядки конденсатора и изменение во времени тока в цепи зарядки (а) и напряжения на обкладках конденсатора (б): Е - эдс; I0 - начальная сила тока в цепи; К - ключ; R - ограничительный резистор; С - конденсатор; i - ток зарядки; uc - напряжение на обкладках конденсатора; t - время; τ - постоянная времени зарядки.

Википедия

Переходные металлы


Перехо́дные мета́ллы (перехо́дные элеме́нты) — элементы побочных подгрупп Периодической системы химических элементов Д. И. Менделеева, в атомах которых появляются электроны на d- и f-орбиталях. В общем виде электронное строение переходных элементов можно представить следующим образом: ( n 1 ) d x n s y {\displaystyle (n-1)d^{x}ns^{y}} . На ns-орбитали содержится один или два электрона, остальные валентные электроны находятся на ( n 1 ) d {\displaystyle (n-1)d} -орбитали. Поскольку число валентных электронов заметно меньше числа орбиталей, то простые вещества, образованные переходными элементами, являются металлами.

Что такое Перех<font color="red">о</font>дные элем<font color="red">е</font>нты - определение